


Abstract

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world and

inflicts significant health, economic and social burden on populations. Various mathematical models

have appeared in literature to investigate dengue epidemiology. Due to significant progress made

in dengue vaccine development lately, a licensed vaccine is expected to be available in less than

10 years. It is imperative to choose target age groups for the vaccine that most efficiently reduce

the disease burden. A generic dengue mathematical model based on previous dengue models is

formulated and a Bayesian approach that uses Monte Carlo Markov Chain (MCMC) simulation to

estimate the unknown parameters of the model is outlined. We propose to use Akaike Information

Criterion and Bayesian Information Criterion on the results from Bayesian MCMC on our models

with clinical data from Thailand to select most parsimonious model for dengue transmission. This

model selection could be significant contribution to understanding of dengue transmission. The

dengue model will then be extended to include age structure in the population and an optimization

framework is presented that will be used to examine the optimal vaccine allocation.
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Chapter 1

Introduction

Humankind has always been afflicted by infectious diseases, but epidemics were compara-

tively rare before the advent of human civilization. Once people stopped leading a nomadic life and

began living in villages, then in towns and cities, pathogens that cause infectious diseases started

spreading easily. People get exposed to these pathogens either by direct contact (through air, pol-

luted water and food) or by indirect contact (through bloodsucking insect carriers of disease such

as mosquitoes, fleas and lice).

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world and

inflicts significant health, economic and social burden on populations. Worldwide, an estimated 2.5

billion people live in areas where dengue is an epidemic, out of which approximately 975 million live

in urban areas in tropical and sub-tropical countries in Southeast Asia, the Pacific and the Americas

(Figure 1.1). Dengue has been recognized in over 100 countries and an estimated 50–100 million

dengue infections occur annually (Guzmán and Kouri, 2002). Moreover, the global estimation of

number of disability-adjusted life years (DALYs) lost to dengue in 2001 was 528000.

Dengue virus (DEN) is a small, spherical and single-stranded RNA virus in the genus Fla-

vivirus in the family Flaviviridae, which also includes yellow fever virus and West Nile Virus. Dengue

viruses are divided into four distinct classes, known as serotypes, referred to as DEN-1, DEN-2, DEN-

3 and DEN-4. Infection with one serotype provides immunity to other viruses in that same serotype,

but no long-term immunity to the other serotypes. Within each serotype, distinct genotypes have

been identified which indicates the extensive genetic variability within the dengue serotypes. An

individual infected with one of the four serotypes such that the individual had no prior experience
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Figure 1.1: Areas at risk for dengue transmission, 2008 (Organization et al., 2009).

of infection with any of the serotype is said to be infected with Primary infection. Similarly, an

infected individual is said to be infected with Secondary infection if the individual have had prior

infection with any one of the dengue serotypes. Persons living in areas where dengue is an endemic

can be infected with three and probably four dengue serotypes during their lifetime (Gubler, 1998a).

The various serotypes of the dengue virus are transmitted to humans through the bites

of Aedes mosquitoes. Aedes aegypti mosquitoes are the predominant vectors for dengue infection,

however Aedes albopictus and other Aedes species are also able to transmit dengue with varying

degree of efficiency. The mosquitoes acquire the virus when they bite an infected human. The

mosquitoes are capable of transmitting dengue if they bite another human immediately or after

incubating the infection for eight to twelve days, which is known as the extrinsic incubation period.

The mosquitoes remain infected for rest of their lives. Vertical transmission of virus from mother

to offspring is thought to be rare in both mosquitoes and humans (Siler et al., 1926; Sabin, 1952;

Gubler, 1998b; Guzmán and Kouri, 2002; Luz et al., 2003; Kyle and Harris, 2008) .

Once the dengue virus is inoculated into a human host, it incubates for a period of 4–10 days,

the intrinsic incubation period. Following incubation, an infected person enters the acute phase of

infection for about 5 days. The host recovers from the infection usually within 7–10 days. Infection

with one type of dengue serotype provides lifelong protective immunity to the infecting serotype,

and possibly partial and short-lived protection from infection with other dengue serotypes (Sabin,

1952). The symptoms of disease vary greatly from mild fever, high fever with severe headache and
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joint pain and internal hemorrhaging, to circulatory failure and death. The cases are classified,

in order of increasing severity as dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue

shock syndrome (DSS) (Guzmán and Kouri, 2002; Halstead, 2007). The severity of disease in an

individual is determined by several factors such as age, ethnicity and, possibly the presence of some

chronic diseases and previous dengue infection (Guzmán and Kouri, 2002). Young children can be

especially susceptible to dengue (Guzmán et al., 2002). Most patients who develop severe forms

of dengue (DHF or DSS) have had prior infections with one or more dengue serotypes (Halstead,

2007). One explanation for this phenomenon is antibody-dependent enhancement (ADE), where the

presence of antibodies to one dengue serotype enhance the replication of viruses from other serotypes,

perhaps leading to increased susceptibility to infection or transmission once infected, in addition to

increasing the risk of severe disease (Halstead, 2007). Certain dengue genotypes, particularly those

of DEN-2, are thought to be more virulent than others, since more number of cases of DHF have

been associated with DEN-2 than with the other serotypes (Rico-Hesse, 2003).

With the expanding geographic distribution and increased disease incidence in past several

decades, the prevention and control of dengue infection has become very important. Unfortunately,

tools available to prevent dengue infection are very limited. For many years, some viral diseases have

been controlled using vaccines, however a dengue vaccine is yet to be made available. Therefore,

in order to reduce or prevent dengue virus transmission, there is currently no alternative to vector

control. The dengue vector control programmes of most endemic countries have been frequently

found insufficient, ineffective or both. The low success rate of vector control, continuing spread of

dengue and increasing incidences of dengue, calls for a safe, effective and affordable vaccine. The

ideal dengue vaccine should be affordable, free of important reactogenicity, and should induce life-

long protection against infection with any of the four dengue serotypes (i.e. tetravalent) (Guzman

et al., 2010).

Recently, significant progress has been made in the development of vaccine candidates. Two

vaccines, one from Sanofi Pasteur is in its early Phase III trials and the other developed jointly

by Walter Reed Army Institute of Research and GlaxoSmithKline is in advanced phase II trials,

and several others are in phase I trials or advanced preclinical evaluation. The vaccine from Sanofi

Pasteur has now been given safely to more than 5000 volunteers, including children and adults from

dengue-endemic and non-endemic areas. The vaccine candidate has been shown to induce almost

full seroconversion against all four serotypes in both adults and children after two to three injections
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(Guy et al., 2011). A licensed vaccine for dengue is expected to be available in less than 10 years

(Guzman et al., 2010).

The chapters hereafter are organized as follows: In chapter 2, we present three mathematical

models of dengue by Cummings et al. (2005), Wearing and Rohani (2006) and Nagao and Koelle

(2008) used in past by researchers to study the dynamics of dengue transmission. In chapter 3,

a generic dengue model is introduced which encompasses the three models discussed in chapter 2

and then the methods to be used for the estimation of model parameters and model selection to

determine the model that most parsimoniously fits the data. Finally, in chapter 4, we extend the

generic dengue model introduced in chapter 3 to an age-structured model and present the approach

for optimizing the allocation of a new dengue vaccine.
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Chapter 2

Mathematical Models of Dengue

Studying the incidence and distribution of an infectious disease in a population provides

crucial information about which factors most contribute to infection and transmission and allows

for exploring possible interventions to control the disease. Numerous approaches have been used to

understand the epidemiology of dengue fever (DF) and dengue hemorrhagic fever (DHF). There are

several specific ecological characteristics of the dengue virus (DENV) which have often been explored

using mathematical models. Various mathematical models for dengue infection have appeared so

far, and successfully helped us to understand the different aspects of the disease. The different

mathematical models formulated by dengue researchers differ from each other in the approaches

taken and the underlying assumptions. For example, a series of studies by Focks et al. (1993a,b, 1995,

2000) investigated the quantitative value of models using epidemiological data and simulations, while

others focused purely on qualitative patterns of equation system motivated by ecological interests

(Ferguson et al., 1999; Esteva and Vargas, 2000; Esteva and Mo Yang, 2005). Despite different

purposes, these studies share a common methodology for the underlying structure of population

dynamics.

One of the most intriguing ecological feature of dengue is co-circulation of its four closely

related dengue serotypes and the pathogenesis of DHF associated with secondary infection by a

heterologous strain. Ecologically, it is of particular interest to understand co-circulation of dengue

serotypes, which is a peculiar phenomena due to the competition (or interference) between strains.

Usually, in the case of co-circulation of more than one strain of a disease, there is competition be-

tween strains due to cross-protective immunity between strains. However, dengue is different from
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the majority of other diseases in that infection with a second, heterologous serotype enhances the

severity (Nishiura, 2006). Ferguson et al. (1999) found that this fact supports persistent cyclical

behavior. Moreover, the specific pathogenesis characterized by antibody-dependent enhancement

(ADE) appears to be a factor permitting co-existence (Ferguson et al., 1999; Kawaguchi et al.,

2003). After a person recovers from first dengue infection, they develop immune response to that

dengue serotype. However, after a period of transient cross-protection, a second experience with a

heterotypic virus may result in enhanced viral replication and lead to increase in severity of clinical

manifestations of dengue virus infection. This situation is referred to as antibody-dependent en-

hancement (ADE). There are different possible hypothesized consequences of ADE. ADE is thought

to increase the susceptibility of host or result in increased transmissibility of secondary infections.

An alternative hypothesis is that ADE can increase the mortality and shorten the effective infectious

period (Kawaguchi et al., 2003)..

We introduce three main mathematical dengue models by Cummings et al. (2005), Wearing

and Rohani (2006) and Nagao and Koelle (2008). These models incorporate the co-circulation

of multiple dengue serotypes, ADE and seasonality. Cummings et al. formulated a deterministic

compartmental model with ADE and their analysis suggests that enhancement would decrease the

transmission, except at high levels of enhancement, where the probability of extinction of the disease

increases. Wearing and Rohani used a hybrid stochastic compartmental model with ADE and

serotypes in the Thailand population and showed that a combination of seasonal variation in vector

demography and crucially, a short-lived period of cross-immunity sufficiently explains periodicity

in DHF. In their paper, Nagao and Koelle showed that decreases in dengue transmission may act

to increase the incidence of DHF. This was explained by a new mathematical model with a short

post-infection period in which individuals can have asymptomatic infections with new serotypes and

gain immunity, which they called clinical cross-protection. This clinical cross-protection was shown

to be able to account for the non-monotonic relationship between transmissibility of dengue infection

and DHF incidence.

2.1 Model I

Ferguson et al. (1999) examined the effect of ADE on the dynamics of dengue transmission

in a 2-serotype model, in which they assumed that ADE increases the viral load of individuals who
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are experiencing a second, heterotypic infection. Thus, secondary infections act to increase the force

of infection. Cummings et al. (2005) generalized the model used by Ferguson et al. to develop a

model that incorporates the co-circulation of four dengue serotypes and more generally, n serotypes

to study the effect of ADE in the systems of varying numbers of co-circulating serotypes. They

used this model to determine the impact of ADE on the competition between serotypes in a single

population. The dynamics of n serotypes circulating in a single population of constant size are given

by

dS

dt
= µ− S

n∑

i=1

λi(t)− µS, (2.1a)

dIi
dt

= Sλi(t)− (σ + µ)Ii, (2.1b)

dRi
dt

= σIi −Ri
n∑

j=1
j 6=i

λj(t)− µRi, (2.1c)

dIij
dt

= Riλj(t)− σIij − µIij , (2.1d)

dR∗∗
dt

=
n∑

i=1

n∑

j=1
j 6=i

σIij − µR∗∗, (2.1e)

for i, j = 1, 2, . . . , n with j 6= i, where S(t) is the fraction of population susceptible to all n serotypes,

Ii(t) is the fraction currently infectious with serotype i, Ri(t) is the fraction recovered from infection

with serotype i, Iij(t) is the fraction currently infectious with serotype j having previously been

infected by serotype i, and R∗∗(t) is the fraction who have recovered from two infections of dengue.

Individuals are assumed to be immune to all serotypes of dengue after two sequential infections

because infections from more than two serotypes are reported very rarely (Nisalak et al., 2003).

It is assumed that primary infection with any single dengue serotype provides lifelong homotypic

immunity. However for simplicity, short-term cross-immunity between serotypes and seasonality are

not included in the model. ADE is assumed to increase the transmissibility of secondary infections

of serotype i by a factor φi, labeled as ADE factor. For model simplicity, the transmission coefficient

β is assumed to be equal for each serotype. The force of infection for serotype i, which is the per
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capita rate of acquisition of infection with serotype i,

λi(t) = β


Ii(t) + φi

n∑

k=1
k 6=i

Iki(t)


 , (2.1f)

is assumed to be proportional to the total fraction infectious with serotype i but with secondary

infections weighted by the enhancement factor, φi (Ferguson et al., 1999). An ADE factor of 1 corre-

sponds to no enhancement, whereas an ADE factor of 2 means that secondary infections contribute

twice as much as primary infections to the force of infection. The population is assumed constant

with a birth rate µ, exactly equal to death rate for model simplicity. Due to the low case fatality

rate of dengue infection in Thailand (approximately 1 death per 10,000 infections) (Shepard et al.,

2004), mortality rates in the population are assumed to be independent of disease status. The rate

of recovery, given by σ, is assumed to be equal for both primary and secondary infections.

Using this model, Cummings et al. determined the behavior of the systems while changing

the ADE factor for all serotypes at once (denoted by φall) and for changing the value of the ADE

factor for just one serotype (without loss of generality choosing φ1 to vary) while holding the ADE

factor equal to 1 for all other serotypes. The behavior of solutions changed dramatically at different

values of φall (Figure 2.1) and φ1. Although equal base transmission rates for each of the serotypes

was assumed, the prevalence of each serotype was not equal at all times. A general trend found was

increasingly large oscillations with increasing enhancement.

The model was used to quantitatively measure the effect of ADE on the prevalence of

a dengue serotype undergoing enhancement by comparing the serotype’s equilibrium prevalence at

various levels of enhancement in a system of n (n = 2 to 6) circulating serotypes and it was observed

that the solutions oscillate for large values of ADE factor. However, for reasonably small changes in

the ADE factor of the enhanced serotype (φ1 < 2), the equilibrium point of the system was stable.

Moreover, equilibrium prevalence of the enhanced serotype increased as the ADE factor increased,

and for every unit increase in ADE factor, the increase in prevalence that occurred was greater in

systems with greater number of co-circulating serotypes.

The work done by Cummings et al. suggests that ADE initially provides an advantage to

those serotypes that undergo enhancement compared to those serotypes that do not, and that this

advantage increases with increasing numbers of co-circulating serotypes. However, as enhancement
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Figure 2.1: Example time series from simulation with φi equal for all i. The x axis is time in years
and the y axis is log of number of infections. The different colors represent the different serotypes.

provides substantial advantage, the enhanced strains overcompete with other serotypes and exhaust

the pool of individuals susceptible to secondary infections. The loss of this resource causes large

amplitude cycles for the enhanced serotype and eliminates the advantage gained by ADE (because

there are very few secondary infections).

2.2 Model II

To understand the dynamics of dengue epidemics, Wearing and Rohani (2006) adopted

a theoretical approach that combined both ecological and immunological mechanisms. They for-

mulated a general model for a vector-borne multi-strain pathogen and applied it to dengue to

determine whether population-level data are consistent with ADE, variation in virulence or the hy-

pothesis of temporary heterologous cross-immunity. The model is based on traditional susceptible-

exposed-infectious-recovered classes for the human host and susceptible-exposed-infectious classes

for mosquito host (Anderson and May, 1991). The cross-immunity and ADE are assumed to be

related to cross-reactive antibody levels that wane over time, so that any period of heterotypic
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cross-immunity or ADE is temporary. The model also includes an important ecological ingredient

that is often ignored: seasonal variation in mosquito recruitment, which gives rise to temporal varia-

tion in transmission. ADE is incorporated in the model based on assumptions about immunological

consequences of ADE: that it can result in increased transmission, by either increased susceptibility

to infection after a primary infection or increased infectiousness with a secondary infection. As with

ADE, variation in virulence is assumed to increase transmission or increase mortality after infection

with a particular serotype.

The model with 4 serotypes is given by the differential equations

dS0

dt
= (NH − S0)µH −

4∑

i=1

λV iS0, (2.2a)

dEi
dt

= λV iS0 −
4∑

j=1
j 6=i

φjλV jEi − (σH + µH)Ei, (2.2b)

dIi
dt

= σHEi −
4∑

j=1
j 6=i

φjλV jIi − (γi + µH)Ii, (2.2c)

dCi
dt

= γiIi −
4∑

j=1
j 6=i

ξjλV jCi − (δi + µH)Ci, (2.2d)

dSi
dt

= (1− ρi)δiCi −
4∑

j=1
j 6=i

χjλV jSi − µHSi, (2.2e)

dVSi
dt

= (kNH [1− a cos(2πt)]− VSi)µV −
4∑

j=1
j 6=i

λHjVSi, (2.2f)

for i = 1, 2, 3, 4. Newborns are fully susceptible to either serotype and enter the class of immuno-

logically naive individuals, S0. The background mortality rate, µH is assumed to be equal to the

birth rate and total host population is assumed to be of constant size, NH . The variables λV i and

λHi are the serotype-specific forces of infection exerted by the vectors and humans, respectively.

Once susceptible individuals get primary infection with serotype i, they enter the exposed (infected

but not yet infectious) class, Ei, and have a relative probability of contracting an infection with

another serotype simultaneously, modulated by the coinfection parameter, φj . After this latent

period (average length given by 1/σH), if the individuals have not been coinfected they enter the

class Ii, where they continue to have same chance (φjλj/NH) of becoming coinfected with another
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serotype. Immediately after the infectious period (average length given by 1/γi), individuals who

have been exposed to only a single infection enter the refractory class, Ci, and are temporarily

immune to the other serotype. The partial immunity is represented by 0 < ξj < 1, while ξj = 0

gives complete immunity. Disease-induced mortality is included by discounting a proportion of those

leaving refractory phase. This is represented by the per capita infection-induced mortality proba-

bilities, ρi. To incorporate one of the possible consequence of antibody-dependent enhancement

(ADE) in the model, a parameter χj is included to explore the effects of increased susceptibility

to infection with the second serotype (by defining χj > 1). There is no strong evidence to suggest

that vertical transmission (mother to child) of dengue virus is important to the transmission cycle

between humans and mosquitoes. Therefore the mosquito larvae are assumed to emerge as fully

susceptible adults (VSi). In the absence of seasonality (a = 0), recruitment to the susceptible vector

class is proportional to the human population size, so that vector population can be related to the

average number of mosquitoes per person, k. The dynamics of the forces of latency, εHi, and force

of infection, λHi, must defined. In addition, a compartment for all individuals who are no longer

susceptible to either infection (S∗∗) is also included which may include those individuals who are

still exposed or infectious with either serotype (i.e. also included within εHi or λHi). The equations

for these compartments are given by

dεHi
dt

= λV iS0 + ηiλV i




4∑

j=1
j 6=i

φi (Ej + Ij) + ξiCj + ξiSj


− (σH + µh)εHi, (2.2g)

dλHi
dt

=
βiσHεHi
NH

− (γi + µH)λHi, (2.2h)

dS∗∗
dt

=
4∑

i=1

4∑

j=1
j 6=i

(1− ρj)(1− ρx)λV j [φj (Ei + Ii) + ξjCi + χjSi]− µHS∗∗, (2.2i)

for i = 1, 2, 3, 4. The transmission rate from humans to mosquitoes is βi. The parameter ηi is used

to explore the potential of ADE to increase infectiousness of, rather than susceptibility to, secondary

infections. Only one of the ADE factors is explored at a time: either ηi is varied with χi = 1 or χi

is varied with ηi = 1. It is assumed in the model that disease-induced mortality occurs at the end

of the infection so that the effective infectious period remains unchanged by mortality as a result of

infection and there is no trade off between mortality and duration of transmission. The consequence

of this assumption for ADE is that increased mortality after a secondary infection (ρx > 0) has no
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discernible dynamical impact when there are only two serotypes present. However, the alternate

assumption of increased susceptibility after a primary infection modulated by the parameter χi > 1

does induce qualitative dynamical changes. Additionally, the mosquito vectors can acquire multiple

infections and progress through latent stage, εV i, before they become infectious. Unlike human hosts,

the vectors do not recover, so their force of infection (λV i) is only depleted by mosquito mortality:

dεV i
dt

= λHiVSj − (σV + µV )εV i, (2.2j)

dλV i
dt

=
αiσV εV i
NH

− µV λV i, (2.2k)

where αi denotes the transmission rate.

For simplicity, the model presented above assumes that any enhancement after a period

of temporary ADE is permanent, but the model can be extended to include temporary ADE by

adjusting the differential equations for the Si and εH and adding 4 new compartments (Ai) with

additional parameters, ωi, which represent the rate at which cross-enhancing antibody levels from

serotype i wane to neither protective nor enhancing levels. These modifications are given by

dAi
dt

= (1− ρi)δiCi − χjλV jAi − (ωi + µH)Ai (2.3a)

dSi
dt

= ωiAi − λV jSi − µHSi (2.3b)

dS∗∗
dt

=
4∑

i=1

4∑

j=1
j 6=i

(1− ρj)λV j {(1− ρx) [ξj(Ei + Ii) + φjCi + χjAi] + Si} − µHS∗∗ (2.3c)

dεHi
dt

= λV i [S0 + ξi(Ej + Ij) + φiCj + χiAj + Sj ]− (ρH + µH)εH1, (2.3d)

for i = 1, 2, 3, 4.

This model was used to explore the dynamical consequences of different assumptions regard-

ing dengue infection and transmission for the simpler case of two serotypes. The model dynamics

were compared with serological time series from long-term study of dengue in Thai children together

with total dengue cases reported to the Thai Ministry of Public Health. The aggregate data reveal

fluctuations of between 3 and 4 years in dengue case reports, whereas individual serotypes gener-

ally cycle in and out of phase with longer periods than the aggregate data (Wearing and Rohani,

2006). Seasonality was found to be necessary to explain intraannual variation in monthly dengue
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incidences, but has a lesser impact on interannual dynamics. Therefore the immunological mecha-

nisms are investigated with a fixed amplitude of seasonality. The model examines how a combination

of temporary cross-immunity and the strength of ADE (Figure 2.2 A, D and G), duration of ADE

(Figure 2.2 B, E and H) or asymmetry in virulence (Figure 2.2 C, F and I) influences individual

serotype outbreaks (Figure 2.2 A–C), aggregate dynamics (Figure 2.2 D–F) and the correlation

between serotypes (Figure 2.2 G–I).

For very short periods of cross-immunity (< 2 months), annual cycles in serotype incidence

were driven by annual variation in vector recruitment, unless ADE was significantly increased, which

leads to multiannual synchronized serotype cycles. For more realistic periods of cross-immunity, in-

creasing ADE reduces the intrinsic epidemiological period for individual serotypes, and the aggregate

data have an even shorter periodic signature because individual serotype epidemics do no coincide.

This observation from (Figure 2.2 A, D and G) suggests that a minimum period of cross-immunity

is necessary to obtain the empirically observed periods of 3 years. Moreover, ADE alone gives rise to

much longer cycles. Same qualitative patterns emerged if ADE was a transient process (Figure 2.2

B, E and H). While considering differential serotype virulence in model, main focus is on increased

mortality due to a primary or secondary infection with a particular serotype. It is observed that,

without a period of temporary cross-immunity, increases in mortality do not result in the observed

cyclic incidence of dengue (Figure 2.2 C, F and I) whereas with temporary cross-immunity, cycles

of 4 years are observed, which is consistent with the dengue mortality statistics.

In summary, Wearing and Rohani observed that patterns generated solely by ADE or het-

erogeneity in virus virulence are not consistent with serotype-specific notification data in impor-

tant ways. Furthermore, a short-lived period of cross-immunity induced by infection with another

serotype seems to be sufficient to match the epidemiological observations.

2.3 Model III

Despite public health measures aimed at dengue vector control in many countries in Asia and

South America, DHF incidence rates do not appear to be declining, which leads to the effectiveness

of vector control in reducing dengue transmissibility being questioned. So, Nagao and Koelle (2008)

used epidemiological data for dengue from Thailand to explore the reasons behind this observation.

They found that dengue transmission has indeed fallen, however, the decline in transmission is
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Figure 2.2: ADE or variation in virulence; the dominant period and correlation of two dengue
serotypes from deterministic model simulations. A, D, and G explore the effects of permanent ADE,
B, E, H explore the effects of temporary period of ADE. C, F, and I show the effects of increasing
mortality due to infection with only one of the serotypes.
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not associated with the decrease in DHF incidence. Instead, it was found that decrease in dengue

transmission may act to increase the incidence of DHF. To understand this dynamic, Nagao and

Koelle formulated three mathematical models of dengue. The models differ in their assumptions of

transient between-serotype cross-protection. The first two models are used to show that ADE alone

or ADE together with short-term cross-protection can not reproduce the empirical observations of

higher DHF incidence rates at lower transmission rates. The previously unconsidered third model

is used to show ADE together with short-term clinical cross-protection, which prevents clinical

illness but allows serotype conversion, captures the empirical pattern. Finally it is shown that

the deterministic simulations of the clinical cross-protection model reproduces the patterns of DHF

interannual variability as well as observed patterns of interannual serotype fluctuations.

In their model, Nagao and Koelle compartmentalized the hosts according to their infection

histories. Transmission of the virus occurs directly from infected individuals to susceptible hosts,

without explicitly modeling mosquitoes. The model assumes that primary infection with any single

dengue serotype provides lifelong homotypic immunity. The four-dengue serotype model has 24 = 16

classes of uninfected hosts SJ , with J denoting the set of strains a host has previously been exposed

to and so is immune to. Therefore, the SJ includes the completely naive hosts S∅, as well as hosts

who have been exposed to one or more of the four dengue serotypes. There are 32 = 4 · 24−1 classes

of infected individuals, with IiJ representing the number of individuals currently infected with strain

i and having previously been exposed to strains in set J . The differential equations are

dS∅
dt

= µN −
∑

j∈K
λjS∅ − µS∅ (2.4a)

dSJ
dt

=
∑

j∈J
νIjJ\{j} −

∑

i/∈J
σiJ λ

iSJ − µSJ , for all J 6= ∅, (2.4b)

dIiJ
dt

= σiJ λ
iSJ − (µ+ ν)IiJ (2.4c)

where the force of infection for strain i is

λi =
∑

J⊂K\{i}

βiJ I
i
J

N
(2.4d)

1/µ is the average host life span; 1/ν is the average duration of infectiousness; K = {1, 2, 3, 4} is

the set of dengue serotypes, DEN-1 to DEN-4; σiJ is the susceptibility-reduction factor; and βiJ is
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the transmission rate. The model incorporates the effects of ADE using the susceptibility factor

σiJ and the transmission rate βiJ . In their first model, which assumes no period of heterologous

cross-protection, σiJ = 1 for all i and J .

To keep track of the dynamics of DHF cases (a subset of infected individuals) separately,

another set of 32 = 4 · 24−1 compartments are added:

dCiJ
dt

= piJ σ
i
J λ

iSJ − (µ+ ν)CiJ (2.4e)

where piJ is the probability that an individual previously infected with strains J and becoming

infected with strain i develops DHF. For the models with a transient period of heterologous cross-

protection, the above equations are modified by adding 16 = 24 temporarily immune classes, TJ ,

which is indexed in the same way as the susceptible classes, SJ . To include temporary immunity,

the dynamics of the uninfected hosts, SJ , are modified to

dSJ
dt

= δTJ −
∑

i/∈J
σiJ λ

iSJ − µSJ (2.5)

where 1/δ is the average duration of heterologous cross immunity. The dynamics of the TJ classes are

dependent on the type of heterologous cross-protection. For the model with clinical cross-protection,

the equations for the TJ classes are

dTJ
dt

=
∑

i∈J
νIiJ\i − (µ+ δ)TJ (2.6)

For the model with clinical cross-protection, the equations for the TJ classes are instead

dTJ
dt

=
∑

i∈J
νIiJ\i −

∑

i/∈J
λiTJ +

∑

i∈J
λiTJ\i − (µ+ δ)TJ . (2.7)

The term
∑
i/∈J λ

iTJ is the loss of individuals from the class TJ through sub-clinical infection

with a new serotype. The term
∑
i∈J λ

iTJ\i is the gain of individuals to class TJ through sub-

clinical infection from another temporarily immune class. In both models, T∅ and dT∅
dt are zero

because individuals only gain temporary immunity following an infection. For the simulations, a

small immigration rate m and a small level of seasonal forcing ε is included. These addition result
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in a minor change for the definition of the forces of infection, which are now

λi = [1− ε cos(2πt)]


 ∑

J⊂K\i

βiJ I
i
J

N
+m


 , (2.8)

where t is given in years and m is the per-host immigration rate.

The first model considered by Nagao and Koelle represents the class of models such as Fer-

guson et al. (1999) in which ADE sets in immediately after recovery from infection. The second

model includes a transient period of heterologous cross-protection against reinfection and captures

the immunological assumptions present in dengue model by Wearing and Rohani (2006). The third

model also includes a transient period of heterologous cross-protection. However, instead of mod-

eling cross-protection classically, this model assumes clinical cross-protection: A challenge with a

previously unexperienced serotype during the cross-protected period does not result in clinical man-

ifestation of DHF nor in transmissible infection; however, the challenge does result in a gain of

immunity toward the challenging serotype.

Figure 2.3 shows the results of simulating these three models deterministically over a wide

range of basic reproductive number, R0, which is the mean number of secondary cases a typical

single infected case will cause in a population with no immunity to the disease and in the absence

of interventions to control the infection. The first two models generated a monotonic relationship

between R0 and DHF incidence at higher R0 which means at higher R0, the fraction of infected

individuals in the population is higher and there are more secondary infections leading to higher

DHF incidence. In contrast to the first two models, the third model with clinical cross-protection,

reproduces the non-monotonic relationship between R0 and DHF incidence and is consistent with

empirical observation. A long, slightly decreasing plateau of DHF incidence is observed at high

R0. The pattern is evident for any duration of cross-protection, although the negative relationship

between R0 and DHF incidence is more pronounced for longer durations of protection. The negative

relationship between R0 and DHF incidence at high R0 is attributed to the increasing number of

individuals that gain heterologous serotypes while being transiently cross-protected from becoming

infectious and from manifesting DHF clinically.
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Figure 2.3: DHF incidence rates as a function of the basic reproduction number, R0. Results
from the model without temporary cross-protection are shown in black, results from the model
with classical cross-protection are shown in blue, and results from the model with clinical cross-
protection are shown in red. For the two models with transient cross-protection, three durations of
cross-protection were considered: 1/δ = 1/2 year (dotted),1/δ = 1 year (solid) and 1/δ = 2 year
(dashed).
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Chapter 3

Parameter Estimation and Model

Selection

On the basis of the dengue models of Cummings et al. (2005), Wearing and Rohani (2006)

and Nagao and Koelle (2008) discussed in the previous chapter, we formulated a generic mathemati-

cal model which encompasses all the three models and their hypotheses about dengue epidemiology,

allowing us to explore all the dynamical aspects of dengue explained by these models. In general,

this model has many parameters which we will estimate by fitting the clinical data on dengue from

Thailand (Nisalak et al., 2003). As in the previous models, this model allows for the exclusion of

the different hypotheses about dengue epidemiology by setting the associated parameter to a default

value and thereby reducing the number of parameters which must be estimated. We will systemati-

cally explore whether the data are consistent with the epidemiological hypotheses by determining the

goodness of fit of the model to the data for each combination of hypotheses and use the techniques

of model selection to find the model that most parsimoniously agrees with the data.

3.1 Dengue Mathematical Model

We formulated this new model by modifying the model of Nagao and Koelle. The model

defines the classes of the uninfected people SJ , the classes of infected people IiJ and the classes

of temporarily immune people TJ in the same way as in the Nagao and Koelle’s model. The new
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dengue mathematical model is given by

dS∅
dt

= µN −
∑

i∈K
λi(t)S∅ − µS∅, (3.1a)

dSJ
dt

= δTJ −
∑

i/∈J
σiJ λ

i(t)SJ − µSJ , for all J 6= ∅, (3.1b)

dIiJ
dt

= σiJ λ
i(t)SJ − (µ+ γiJ + νiJ )IiJ , for all J and i /∈ J , (3.1c)

dTJ
dt

=
∑

i∈J
γiJ I

i
J\i + χ

(∑

i∈J
λi(t)TJ\i −

∑

i/∈J
λi(t)TJ

)
− (µ+ δ)TJ , for all J 6= ∅, (3.1d)

where the force of infection for strain i with a small level of seasonal forcing ε is

λi(t) = [1 + ε cos(2πt)]


 ∑

J⊂K\i

βiJ I
i
J

N


 , for all i ∈ K. (3.1e)

The set of dengue serotypes, DEN-1 to DEN-4, are represented by K = {1, 2, 3, 4} so that the

current serotype index is i ∈ K and the previous serotype index is J ⊂ K. The parameter 1/µ

is the average life span; 1/δ is the average duration of heterologous cross immunity; σiJ is the

susceptibility-reduction factor, relative to people who have had no previous infections, so σi∅ = 1; νiJ

is the mortality rate for the individuals currently infected with strain i having previously experienced

strains in set J ; 1/γiJ is the average duration of infectiousness; βiJ is the transmission rate; and the

parameter χ is the odds of a temporarily immune person gaining clinical cross-protection from an

infectious mosquito bite, relative to the chance of infection of a person with no previous infections.

With this general model defined, the parameters can be specified to explore the different

possible hypothesized effects of ADE. This model is quite general, allowing differences in parameters

for different current serotypes i and different previous serotypes J . Due to the huge numbers of

parameters this allows in general and the lack of strong evidence for serotype-specific differences in

dengue epidemiology, we will take the parameters to vary only with the number of previous serotypes,

|J |, and, more specifically, whether a person has had none vs. 1 or more previous serotypes, as is

generally hypothesized to be the determining factor for ADE.
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3.1.1 Enhancement of Transmission

One hypothesis for the consequence of ADE on the dynamics of dengue is that ADE causes

increased transmission of dengue virus, which is controlled by the parameter βiJ in our model.

Without enhancement of transmission, we define

βiJ = β1, for all J and i, (3.2)

so that all infections have equal transmission, regardless of the current or previous serotypes. In

contrast, to incorporate the hypothesis of increased transmission in our model, we choose βiJ to be

higher for the individuals who have previously been exposed to one or more dengue strains than the

individuals who have not been exposed to any of the dengue strains. So we define the βiJ as

βiJ =





β1 if |J | = 0,

β2 if |J | ≥ 1,

for all i, (3.3)

where β2 > β1.

3.1.2 Enhancement of Susceptibility

The susceptibility-reduction factor σiJ is used to explore the increased susceptibility as a

consequence of ADE. Without enhancement of susceptibility, we define

σiJ = 1, for all J and i, (3.4)

so that all individuals have equal susceptibility, regardless of the current serotype and previous

serotypes they might have had. In contrast, to incorporate increased susceptibility as an effect of

ADE, an individual who has experienced infection with at least 1 dengue serotype previously is more

susceptible than an individual who has not experienced infection from any serotypes. So increased

susceptibility is incorporated in the model as

σiJ =





1 if |J | = 0,

σ1 if |J | ≥ 1,

for all i, (3.5)
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where σ1 > 1.

Moreover, it is not clear whether infection with third and fourth serotypes is possible. We

will also use the hypotheses that they are possible, as is incorporated above, or that they are not

possible by setting

σiJ = 0 for |J | ≥ 2 and all i, (3.6)

in addition to the possible enhancement of susceptibility to second infections.

3.1.3 Mortality

Higher dengue-induced mortality is generally associated with secondary infections, which is

controlled by the parameter νiJ in our model. Without enhancement of mortality, we define

νiJ = ν1, for all J and i, (3.7)

so that all individuals have equal mortality, regardless of the current serotype and previous serotypes

they might have had. On the other hand, we include increased mortality in the model by

νiJ =





ν1 if |J | = 0,

ν2 if |J | ≥ 1,

for all i, (3.8)

where ν2 > ν1.

3.1.4 Duration of Infection

To our knowledge, no hypothesis has been formulated about duration of infection (1/γiJ in

our model) being different depending on a person’s previous number of serotypes. With no difference

in duration of infection, we define

γiJ = γ1, for all J and i, (3.9)
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so that all individuals have equal duration, regardless of the current serotype and previous serotypes

they might have had. On the other hand, we include a longer duration of infection in the model by

γiJ =





γ1 if |J | = 0,

γ2 if |J | ≥ 1,

for all i, (3.10)

where γ2 < γ1.

3.1.5 Cross-Protection

There are two different hypotheses about temporary cross-protection that have been pro-

posed. One hypothesis is that there is a period of cross-protection after an infection during which

people cannot be infected with another serotype. The other hypothesis is that during this period

of cross-protection, people can be infected with another serotype, but the cross-protection prevents

any symptoms whatsoever, so they have an asymptomatic infection resulting in immunity to this

new serotype. This is Nagao and Koelle’s clinical cross-protection and we refer to cross-protection

without the possibility of asymptomatic infection as traditional cross-protection.

The parameter δ is the rate of leaving the cross-protection state, TJ , so that the mean

duration of cross-protection is 1/δ. The assumption of no cross protection is then formally taking

1/δ → 0 or δ → ∞, given by the simplified model created by removing the TJ classes from the

model and replacing the differential equations for SJ for J 6= ∅ with

dSJ
dt

=
∑

i∈J
γiJ I

i
J\{i} −

∑

i/∈J
σiJ λ

i(t)SJ − µSJ , for all J 6= ∅, (3.11)

so that upon recovery from an infection with one serotype, people immediately become susceptible

to the serotypes they have not yet experienced.

On the other hand, with cross-protection, the parameter χ in the model (3.1) allows us to

switch between a model with traditional cross-protection and model with clinical cross-protection.

Setting χ = 0 excludes clinical cross-protection, giving traditional cross-protection, while allowing

χ > 0 includes clinical cross-protection.
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3.2 Parameter Estimation

In order to apply proposed mathematical models to study the dynamics of the disease, we

need to resolve few important problems, one of which is to estimate the unknown parameters in the

models. It is challenging to resolve this problem for a system of differential equations. Generally,

there is no closed-form solution and there are many unknown parameters. In addition, direct data on

population-level parameters such as transmission or susceptibility are extremely limited, due to an

inability to feasibly conduct experiments of infection in people, and instead must be estimated from

indirect population-level data. Researchers usually substitute some of the unknown parameters with

estimates from previous studies. Here we suggest a Bayesian approach to find good estimates for the

unknown parameters. In Bayesian terminology, the information from previous studies is regarded as

prior knowledge, which is combined with the clinical data to perform the statistical inference on the

unknown parameters. We outline this Bayesian approach which uses Monte Carlo Markov Chain

(MCMC) simulation to estimate the unknown parameters of the model.

Given a set of differential equations with unknown (free) parameters θ and the clinical

data D(ti) at the discrete time points {t1, t2, ....}, the aim is to find a set of free parameters so

that the model fits the data at those time points. Let y(ti | θ) be the time series produced by

the mathematical model at the same discrete time point ti’s for which data is available. An error

function is assigned to this data and aim is to minimize the error. The most common error function

is the mean square error, which can be written as:

E =
∑

i

(
Di − y(ti | θ)

)2
(3.12)

The classic way to minimize the error is to take the derivative of the error function with respect

to parameters and find the minimum points. However, for most of the mathematical models this

is done numerically using some iterative schemes. Moreover, the error functions may have multiple

local minima and we need to find the global optimum which can be a very difficult task. We use

the Bayesian MCMC approach to tackle this difficulty. We start with assuming some probability

distribution for our error function. Generally a normal distribution is a good assumption for error

distribution. Hence, we assume that the error function in (3.12), obeys a normal distribution with

24



zero mean and standard deviation σ. We can then write

P (E) ∝ exp

(
−
∑
i (Di − y(ti | θ))2

2σ2

)
(3.13)

Now our model points y(ti | θ) depend on the free parameters, so it can be rewritten as a likelihood

function of the parameters given the data:

L(θ) ∝ exp

(
−
∑
i (Di − y(ti | θ))2

2σ2

)
(3.14)

In order to use Bayesian inference to estimate the parameters, it is assumed that parameters

have probability distribution and we need to have a prior distribution for all the free parameters.

If we have some prior information about the parameters, then it can be used to assign some prior

distribution to the free parameters. However, if we do not know any specific, definite information

which can be used to assign the prior distribution to the parameters, then we can choose a prior

which is flat. In this case the prior is called a noninformative prior. A noninformative prior expresses

a vague or general information about the parameters such as “the parameter is positive” or “the

parameter is less than some limit”. Once prior distribution is defined for the unknown parameters,

we can write the probability of parameters given the data points D using the Bayes theorem:

P (θ | D) =
P (D | θ)P (θ)

P (D)
, (3.15)

where P (D | θ) is the likelihood function L(θ) from (3.14), P (θ | D) is called the posterior distri-

bution, P (θ) is the prior distribution and P (D) is called the evidence, which is an integral of the

likelihood over the prior distribution of the parameters:

P (D) =

∫
P (D | θ)P (θ) dθ. (3.16)

We notice from the expression for the likelihood (3.14) that the likelihood is maximal when

the error is minimal. The method of maximum likelihood is to simply find the set of the parameter

values that maximize the likelihood function. We use a simple Metropolis algorithm to do a maximum

likelihood estimation. The Metropolis algorithm uses an acceptance–rejection rule to converge to

the required posterior distribution. The algorithm is as follows:
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1. We start with some initial guess for the parameter values. It is done by drawing a starting

point θ0 for which P (θ0 | D) > 0 from a starting distribution P0(θ) or we may choose some

previous estimates for the parameter values if available.

2. For each step t = 1, 2, 3, ......

(a) We propose a new set of parameter values by sampling a proposal θ∗ from a Jump-

ing distribution,J(θ∗ | θt−1) at step t. The jumping distribution J(θ∗ | θt−1) must be

symmetric for this algorithm.

(b) We generate a random uniform number between 0 and 1 and call it α. The likelihood

ratio is calculated as

r = min

{
P (θ∗ | D)

P (θt−1 | D)
, 1

}
(3.17)

(c) Set

θt =





θ∗ if α < r,

θt−1 otherwise.

(3.18)

We run this algorithm for a long enough time and pick the parameter set that had the maximum

likelihood. Generally, we just keep the parameter values after some burn in period. Since, there

are no good theorem about the convergence rate of the MCMC, so it is difficult to decide how

long we need to run. Generally, we run the MCMC, increase the time and run again and see how

much answer converges. If parameters start to converge, we can be confident that we have run the

simulation long enough. In principle, if we wait long enough MCMC will sample all of the guess

space and find the global optimum. However, in practice, it can get stuck in local minima for a long

time before getting out.

We will use Bayesian MCMC and clinical data from Thailand (Nisalak et al., 2003) to

estimate the parameter values for our model (3.1) with the different hypotheses about dengue epi-

demiology. Indeed, we have begun implementing MCMC, so far only similar but simpler models.

We are carefully considering whether the error function (3.14) is appropriate for our models.
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3.3 Model Selection

It is possible to have several possible mathematical models that could explain the data

available and we need to know that which of the model is best. The first thing which can be done

is to see which model fits the data best. However, a more complex model with more parameters

will likely fit the data better than a less complex model with fewer parameters, independent of

whether it is actually a better model. For example we could always use a polynomial model with

as many parameters as data points and it would fit the data perfectly but explain nothing. It is

important to balance how good a model fits the data with the complexity of the model. Some

of the popular methods to address this issue are Akaike Information Criterion (AIC) and Bayes

Information Criterion (BIC).

The AIC selection procedure is based on the idea of finding the model that best approximates

the true, but unknown, mechanisms generating the data. Models are ranked according to the AIC

defined as

AIC(M) = −2 log(L) + 2K (3.19)

where L is the maximized value of the likelihood of the model and K is the number of parameters.

The best model, from a set of models that have been selected, is the one that minimizes AIC. The

interpretation of the AIC is simple: the likelihood L increases as more terms are added to the model,

which makes AIC smaller, but as the terms are added, K increases, which makes AIC larger. Thus

AIC incorporates a trade-off between goodness-of-fit and parsimony of explanation.

The BIC selection procedure is to choose the candidate model with the highest probability

given data. The BIC is closely related to the AIC and is defined as

BIC(M) = −2 log(L) +K log(n) (3.20)

where L is the maximized value of the likelihood of the model, K is the number of parameters and

n is the number of data points, the number of observations, or equivalently, the sample size. The

model with minimum BIC is selected. BIC is very similar to AIC, as both have a penalty term

for the number of parameters in the model. However, this penalty is larger in the BIC than in the

related AIC. In other words, complex models are more penalized by BIC than the simple ones as

compared to AIC.
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We will use AIC and BIC on the results from Bayesian MCMC on our models with the

clinical data from Thailand (Nisalak et al., 2003) to select the most parsimonious model for dengue

transmission. The results of this model selection could be a significant contribution to understanding

dengue transmission, as shown by the competing models in the literature (e.g. Cummings et al., 2005;

Adams et al., 2006; Wearing and Rohani, 2006; Nagao and Koelle, 2008).
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Chapter 4

Optimization of Dengue Vaccine

One of the principal strategies for reducing the disease burden of infectious diseases is

vaccination. As significant progress has been made in the development of a dengue vaccine recently

(Guy et al., 2011), a licensed vaccine is expected to be available in near future. It is important to

evaluate the vaccination policies before distribution of vaccine to allocate resources and to minimize

disease burden. When vaccine availability is limited, it becomes imperative to allocate the vaccines

optimally. Since second infections are likely more severe than primary ones, an efficient vaccine

program would aim at vaccinating children old enough to have experienced a primary infection,

although still young to not yet have experienced a secondary one. Once this group is protected, the

vaccine program would then shift its focus to younger children, and possibly to older people who

may have a small fraction who may not yet have had a secondary infection or who may be at risk

of third or fourth infections. Thus in order to allocate vaccine optimally, it is essential to choose

target age groups for the vaccine that most efficiently reduce the disease burden.

We will select a basic model that most parsimoniously fits the clinical data from Thailand

(Nisalak et al., 2003) using the AIC and BIC on the results from Bayesian MCMC on our models

from chapter 3. The model is then extended to an age-structured model and then we will use

numerical optimization routine to identify the target age groups for the allocation of vaccine.
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4.1 Age-Structured Model

To determine the optimal age-specific distribution of different numbers of available vaccine,

we must incorporate age into the model. This is done by adding discete age groups in the model,

where the first age group is made up of newborns. As time progresses individuals move up to

subsequent age groups or die. We formulate an age-structured dengue model with n+ 1 age groups

with vaccination by extending our dengue model (3.1). We define Sa,J to be the class of uninfected

individuals in age class a who have previously been exposed to strains in set J . The class of infectious

individuals Ia,i,J , and class of temporarily immune individuals Ta,J , are defined in a similar fashion

as Sa,J . An additional class Ra of recovered individuals is added to keep track of vaccinated people

who are immune to all the serotypes. The extended dengue model is given by

dS0,∅
dt

=

n∑

α=0

BαNα −A0S0,∅ −
∑

i∈K
λi0(t)S0,∅ − µ0S0,∅ − V0S0,∅, (4.1a)

dSa,∅
dt

= Aa−1Sa−1,∅ −AaSa,∅ −
∑

i∈K
λia(t)Sa,∅ − µaSa,∅ − VaSa,∅, (4.1b)

dSa,J
dt

= Aa−1Sa−1,J −AaSa,J + δTa,J −
∑

i/∈J
σiJ λ

i
a(t)Sa,J − µaSa,J − VaSa,J , (4.1c)

dIa,i,J
dt

= Aa−1Ia−1,i,J −AaIa,J + σiJ λ
i
a(t)Sa,J − (µa + γiJ + νiJ )Ia,i,J , (4.1d)

dTa,J
dt

= Aa−1Ta,J −AaTa,J +
∑

i∈J
γiJ Ia,i,J\i − (µ+ δ)Ta,J

+ χ

(∑

i∈J
λia(t)Ta,J\i −

∑

i/∈J
λia(t)Ta,J

)
, (4.1e)

dRa
dt

=

n∑

a=0

∑

J
VaSa,J +Aa−1Ra−1 −AaRa − µaRa, (4.1f)

where the force of infection for strain i with a small level of seasonal forcing ε is

λia(t) = [1 + ε cos(2πt)]


 ∑

J⊂K\i
βiJ

n∑

α=0

Ia,i,J
Nα


 , (4.1g)

Bα is the birth rate in age group α, Nα is the number of individuals in age group α, Va is the

vaccination rate for age group a and Aa is the aging constant for age group a and is calculated as

reciprocal of the width of age group, but with An = 0, so that the last age group accumlates all

people above a certain age.
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4.2 Objective Functions

We will determine the optimal age-specific distribution of a limited number of vaccine doses

according to few different outcome measures (objective functions). The different objective functions

we will use are total number of deaths averted, total number of infections averted, years of life saved

and disability-adjusted life years saved. Years of life lost (YLL) takes into account the age at which

death occurs by giving greater weight to deaths at younger age and lower weight to deaths at older

age. Disability-adjusted life years (DALYs) is a health gap measure to determine years of ‘healthy’

life lost by virtue of being in state of poor health or disability. The objective functions can be

calculated from the age-structured model (4.1) as follows:

1. Total number of deaths from infection:

∫ T

0

∑

i

∑

J

∑

a

νiJ Ia,i,J dt. (4.2)

2. Total number of infections: ∫ T

0

∑

i

∑

J

∑

a

σiJ λ
i
aSa,J dt. (4.3)

3. Years of Life Lost (YLL): ∫ T

0

∑

a

Ya
∑

J

∑

i

νiJ Ia,J dt, (4.4)

where Ya is the measure of years of life lost for an individual in age group a,

4. Disability-adjusted lost years (DALYs):

∫ T

0

∑

i

∑

J

∑

a

Di
J σ

i
J λ

i
aSa,J dt, (4.5)

where Di
J is the measure of DALYs for an individual who is currently infected with serotype

i and has previously been exposed to strains in set J . In particular, Di
J for |J | > 0 will be

large relative to Di
∅.
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4.3 Vaccine Optimization

The maximum total number of vaccinations per unit time imposes a constraint on the

optimal vaccine allocation problem. The sum of vaccination rates per unit time for each age group

is bounded by the total number of vaccine available per unit time and the constraint along with the

non-negativity of each group is given by

∑

a

VaSa ≤ VT , (4.6)

where Va ≥ 0 and VT is the total number of available vaccine per unit time for the population.

Now, given the age-structured model and an objective function, our aim is to find a vaccine

allocation for all the age groups in the model such that it satisfies the constraint (4.6) and minimizes

(optimizes) the objective function. To do this we will use numerical optimization algorithms, par-

ticularly we will consider algorithms based on quasi-Newton methods and the Nelder–Mead simplex

method. The results will then be compared for different objective functions to better understand

the basic tradeoffs involved in different optimal allocations as Medlock and Galvani (2009) did for

influenza. Incorporating the demographics of the population due to the larger timescale of dengue

epidemics and the interaction of multiple serotypes might lead to substantial complications over this

previous work.
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